
KS10 FPGA Interrupts and the DSKAH Diagnostic

The Symptom:

The DSKAH DECSYSTEM-2020 BASIC INSTRUCTION DIAGNOSTIC (8) fails with the program counter ‘stuck’
at PC = 033316.

The Diagnostic Code

With the DSKAH source code in-hand, a quick analysis of the diagnostic program (shown below) reveals
that the instruction at address 33316 is “JRST .” – which is a “Jump to self” type instruction. The
diagnostic programs generally use this construct as a ‘trap’ to catch malfunctions.

A further analysis of the diagnostic program reveals that the diagnostic program’s purpose is to test the
KS10’s interrupt system. To accomplish this, the program generates an interrupt and uses that
interrupt to break out of the “JRST .” infinite loop. With this knowledge, it can be safely assumed
that the interrupt is not occurring for some reason.

Two instructions are particularly important to the operation of this code:

1. The instruction at PC=33312 activates Interrupt 1 and enables the PDP10 Priority Interrupt (PI)
system.

2. The instruction at PC=33313 creates software-generated NXM Interrupt on Interrupt 1.

33303 HALTPI ;FILL INTERRUPT LOCATIONS WITH HALTS

33304 CLRPI

33305 CLRAPR

33306 MOVE [JSP UUO] ;SET TRAP TO HALT

33307 MOVEM 41 ;IN THE UUO TRAP LOCATION

33310 MOVE [JSR TRP0A] ;SET PROPER RECOVERY INST.

33311 MOVEM 42 ;INTO CH1 TRAP

33312 CONO PI,2300 ;TURN ON CHAN1

33313 CONO APR,LENXER!LSNXER!LAPRP1 ;CAUSE CACHE SWP DONE AND CHAN

33314 MOVEI 13,1000 ;SET UP LOOP OF TEN TO WAIT FOR INT.

33315 SOJG 13,. ;AND WAIT^

33316 JRST . ;LOOP ON SELF^

33317 TRP0A: 0

33320 0047: SKIPE MONFLG ;RESET FLAGS IF IN MONITOR

The Simulation

The Verilog Simulation is presented below. Of particular interest:

1. The Program Counter (PC) is shown in the 9th trace from the top which is labeled PC[18:35].
The “[18:35]” notation defines a range of bits.

2. The PC[0:35] signal which shown below that is an internal signal that is incremented right
after the instruction is fetched. Therefore it is not the PC of the current instruction. During a
jump or skip instruction it may also point to an instruction that is never fetched or executed.
For the purpose of this example, it is confusing and is best ignored.

3. The HR register (labeled HR[0:35]) contains the OPCODE of the current instruction.
4. The AR[0:35] and BR[0:35] are shown.
5. The contents of AC0 and AC4 are shown below that. Notice that the contents of AC0 are

correctly modified by the instruction at PC=033310. AC4 is not used in this code and may be
ignored. See listing file.

6. The interrupts are enabled during the instruction at PC=033312. This is visible by examining
the intrEN signal which is high-lighted near the bottom of the figure.

7. The CPU Interrupt is never asserted during the instruction al PC=033313. See cpuINTR
signal at bottom of the figure. This is a problem!.

Background Information:

The KS10 (in fact all PDP10s) have a 7 level priority interrupt system with interrupts numbered 1 through
7. Interrupt 1 is the highest priority and Interrupt 7 is the lowest priority. Interrupt 0 is not valid and is
used to represent an interrupt not active condition. Normally 3-bits would be sufficient to describe the
interrupt state (7 priority levels) except that this representation is numerically awkward. If Interrupt 1 is
the highest priority and Interrupt 7 is the lowest priority then an interrupt not active condition needs to
be a numerically lower priority than the lowest interrupt – not higher. To work around this issue, the
interrupt controller adds a fourth-bit which represents this interrupt not active condition and is
numerically lower than the lowest interrupt priority. When an interrupt is requested that is of a higher
priority than the current interrupt priority, then a CPU Interrupt signal is generated. This extra bit is
stripped off once the interrupt priority comparison is evaluated.

The interrupt priority representation is summarized in the table below.

Priority Interrupt
Controller

Representation

KS10 Priority
Interrupt

Representation

Notes

1 0001 001 Highest Priority

2 0010 010

3 0011 011

4 0100 100

5 0101 101

6 0110 110

7 0111 111 Lowest Priority

 1000 000 Inactive

The DEC KS10 Priority Interrupt implementation uses a pair of TTL Priority Encoders and a 4-bit
Magnitude Comparator. This implementation has been (mostly) replicated in the KS10 FPGA.

In the Verilog code example below, anyone conversant in the C Programming Language should recognize
the ternary if statement which operates as follows:

 variable = condition ? value_if_true : value_if_false

The Relevant Verilog Code:

 0: // Requested Priority

 1: wire [0:3] reqPRIORITY =

 2: (~intrEN ? 4'b1000 : // Disabled

 3: reqINTR[1] ? 4'b0001 : // Highest priority

 4: reqINTR[2] ? 4'b0010 :

 5: reqINTR[3] ? 4'b0011 :

 6: reqINTR[4] ? 4'b0100 :

 7: reqINTR[5] ? 4'b0101 :

 8: reqINTR[6] ? 4'b0110 :

 9: reqINTR[7] ? 4'b0111 : // Lowest priority

10: 4'b1000); // Nothing active

11:

12: assign reqINTP = reqPRIORITY[1:3];

13:

14: // Current Priority

15: wire [0:3] curPRIORITY =

16: (curINTR[1] ? 4'b0001 : // Highest priority

17: curINTR[2] ? 4'b0010 :

18: curINTR[3] ? 4'b0011 :

19: curINTR[4] ? 4'b0100 :

20: curINTR[5] ? 4'b0101 :

21: curINTR[6] ? 4'b0110 :

22: curINTR[7] ? 4'b0111 : // Lowest priority

23: 4'b1000); // Nothing active

24:

25: assign curINTP = curPRIORITY[1:3];

26:

27: // If the requested interrupt priority is higher than

28: // the current interrupt priority, then an interrupt

29: // to the CPU is generated.

30:

31: reg cpuINTR;

32: always @(posedge clk or posedge rst)

33: begin

34: if (rst)

35: cpuINTR <= 0;

36: else if (clken)

37: cpuINTR <= (reqINTP < curINTP);

37: end

Analysis:

A quick glance reveals that the priority comparison is performed using the wrong two signals! The
extra bit was added to represent the no interrupt present condition and then never used in the priority
comparison - a simple coding mistake.

The “Fix”:

The obviously correct ‘fix’ is to change line 37 as shown below:

31: reg cpuINTR;

32: always @(posedge clk or posedge rst)

33: begin

34: if (rst)

35: cpuINTR <= 0;

36: else if (clken)

37: cpuINTR <= (reqPRIORITY < curPRIORITY);

38: end

The ‘one-liner’ code change is applied and the simulation is re-run.

Now note that the cpuINTR signal is asserted by the instruction at PC=33313, as it should be. Still
there is no interrupt to the KS10 CPU.

This is progress but something is broken somewhere else, also.

