KS10 FPGA Interrupts and the DSKAH Diagnostic

The Symptom:

The DSKAH DECSYSTEM-2020 BASIC INSTRUCTION DIAGNOSTIC (8) fails with the program counter 'stuck' at PC = 033316.

The Diagnostic Code

With the DSKAH source code in-hand, a quick analysis of the diagnostic program (shown below) reveals that the instruction at address 33316 is "JRST ." – which is a "Jump to self" type instruction. The diagnostic programs generally use this construct as a 'trap' to catch malfunctions.

A further analysis of the diagnostic program reveals that the diagnostic program's purpose is to test the KS10's interrupt system. To accomplish this, the program generates an interrupt and uses that interrupt to break out of the "JRST ." infinite loop. With this knowledge, it can be safely assumed that the interrupt is not occurring for some reason.

Two instructions are particularly important to the operation of this code:

- 1. The instruction at PC=33312 activates Interrupt 1 and enables the PDP10 Priority Interrupt (PI) system.
- 2. The instruction at PC=33313 creates software-generated NXM Interrupt on Interrupt 1.

33303		HALTPI		;FILL INTERRUPT LOCATIONS WITH HALTS
33304		CLRPI		
33305		CLRAPR		
33306		MOVE	[JSP UUO]	;SET TRAP TO HALT
33307		MOVEM	41	; IN THE UUO TRAP LOCATION
33310		MOVE	[JSR TRP0A]	;SET PROPER RECOVERY INST.
33311		MOVEM	42	;INTO CH1 TRAP
33312		CONO	PI,2300	;TURN ON CHAN1
33313		CONO	APR, LENXER!LSN	XER!LAPRP1 ;CAUSE CACHE SWP DONE AND CHAN
33314		MOVEI	13,1000	;SET UP LOOP OF TEN TO WAIT FOR INT.
33315		SOJG	13,.	;AND WAIT^
33316		JRST		;LOOP ON SELF^
33317	TRPOA:	0		
33320	0047:	SKIPE	MONFLG	;RESET FLAGS IF IN MONITOR

The Simulation

The Verilog Simulation is presented below. Of particular interest:

- The Program Counter (PC) is shown in the 9th trace from the top which is labeled PC [18:35]. The "[18:35]" notation defines a range of bits.
- The PC[0:35] signal which shown below that is an internal signal that is incremented right after the instruction is fetched. Therefore it is not the PC of the current instruction. During a jump or skip instruction it may also point to an instruction that is never fetched or executed. For the purpose of this example, it is confusing and is best ignored.
- 3. The HR register (labeled HR [0:35]) contains the OPCODE of the current instruction.
- **4**. The AR [0:35] and BR [0:35] are shown.
- 5. The contents of AC0 and AC4 are shown below that. Notice that the contents of AC0 are correctly modified by the instruction at PC=033310. AC4 is not used in this code and may be ignored. See listing file.

- 6. The interrupts are enabled during the instruction at PC=033312. This is visible by examining the intrEN signal which is high-lighted near the bottom of the figure.
- 7. The CPU Interrupt is never asserted during the instruction al PC=033313. See cpuINTR signal at bottom of the figure. This is a problem!.

🛯 🖥 Read Cycle	0													
🖓 Write Cycle	0													
ါြြ IO Cycle	0													
🗓 busREQ	0	υш			1									
🗓 busACK	0	υш			1									
] 🔓 memWAIT	0													
WORK														
CROM ADDR[0:11]	0117	XXXXXX	XXXXX	000000	\$000000	0000	000000000000000000000000000000000000000	00	00000000	000000000000000000000000000000000000000	0000000000	XXXXX	XXXXXXX	00000
CROM CURRENT AD	0315	XXXXXX		XXXXXXX	\$200000	0000	000000000000000000000000000000000000000	00	00000000	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0000000000000000	XXXX	XXXXXX	XXXXXX
PC[18:35]	033312	\ 03	3310 🗙	033311	X	(33312			033313	X0	33314	0333	15
📑 IR[0:17]	700600	20	0000 🗙	202000	X		00600			700200	<u> </u>	01540 🗙	3675	40
1: PC[0:35]	000000033313	00)00	00000	X0000003	X	00	0000033313		X	000000033314		00000	000	000)
2: HR[0:35]	700600002300	2000	000)	20200000	X	7006	00002300			700200110401	×2	154)	3675400	33315
3: AR[0:35]	000000002300	2650 🛛	26400	X 26400	00)		00000002300			0000001104	01	00000		0033315
5: BR[0:35]	16777280			0		XC	16777280) 0	1	257		51	510
AC0[0:35]	264000033317	265000	X						264000033	317				
AC4[0:35]	273650000000							27	73650000000					
ReqINTR[1:7]	000000						0000000				Х	1	000000	
ReqPRIORITY[0:3]	8						8				X		1	
Curpriority[0:3]	8								8					
📑 reqINTP[0:2]	0						0				X		1	
urINTP[0:2]	0								0					
1 intrEN	1													
🔓 cpuINTR	0													

Background Information:

The KS10 (in fact all PDP10s) have a 7 level priority interrupt system with interrupts numbered 1 through 7. Interrupt 1 is the highest priority and Interrupt 7 is the lowest priority. Interrupt 0 is not valid and is used to represent an *interrupt not active* condition. Normally 3-bits would be sufficient to describe the interrupt state (7 priority levels) except that this representation is numerically awkward. If Interrupt 1 is the highest priority and Interrupt 7 is the lowest priority then an *interrupt not active* condition needs to be a numerically lower priority than the lowest interrupt – not higher. To work around this issue, the interrupt controller adds a fourth-bit which represents this *interrupt not active* condition and is numerically lower than the lowest interrupt priority. When an interrupt is requested that is of a higher priority than the current interrupt priority, then a CPU Interrupt signal is generated. This extra bit is stripped off once the interrupt priority comparison is evaluated.

The interrupt priority representation is summarized in the table below.

Priority	Interrupt	KS10 Priority	Notes					
	Controller	Interrupt						
	Representation	Representation						
1	0001	001	Highest Priority					
2	0010	010						
3	0011	011						
4	0100	100						
5	0101	101						
6	0110	110						
7	0111	111	Lowest Priority					
	1000	000	Inactive					

The DEC KS10 Priority Interrupt implementation uses a pair of TTL Priority Encoders and a 4-bit Magnitude Comparator. This implementation has been (mostly) replicated in the KS10 FPGA.

In the Verilog code example below, anyone conversant in the C Programming Language should recognize the *ternary if statement* which operates as follows:

variable = condition ? value_if_true : value_if_false

The Relevant Verilog Code:

0: // Requested Priority 1: wire [0:3] reqPRIORITY = ? 4'b1000 : // Disabled 2: (~intrEN reqINTR[1] ? 4'b0001 : // Highest priority 3: reqINTR[2] ? 4'b0010 : 4: 5: reqINTR[3] ? 4'b0011 : reqINTR[4] ? 4'b0100 : 6: 7: reqINTR[5] ? 4'b0101 : 8: regINTR[6] ? 4'b0110 : 9: regINTR[7] ? 4'b0111 : // Lowest priority 10: // Nothing active 4'b1000); 11: 12: assign reqINTP = reqPRIORITY[1:3]; 13: 14: // Current Priority 15: wire [0:3] curPRIORITY = (curINTR[1] ? 4'b0001 : // Highest priority 16: curINTR[2] ? 4'b0010 : 17: 18: curINTR[3] ? 4'b0011 : 19: curINTR[4] ? 4'b0100 : 20: curINTR[5] ? 4'b0101 : curINTR[6] ? 4'b0110 : 21: 22: curINTR[7] ? 4'b0111 : // Lowest priority 23: 4'b1000); // Nothing active 24: 25: assign curINTP = curPRIORITY[1:3]; 26: 27: // If the requested interrupt priority is higher than 28: // the current interrupt priority, then an interrupt 29: // to the CPU is generated. 30: 31: reg cpuINTR; 32: always @(posedge clk or posedge rst) 33: begin 34: if (rst) 35: cpuINTR <= 0; 36: else if (clken) 37: cpuINTR <= (reqINTP < curINTP);</pre> 37: end

Analysis:

A quick glance reveals that the priority comparison is performed using the wrong two signals! The extra bit was added to represent the *no interrupt present* condition and then never used in the priority comparison - a simple coding mistake.

The "Fix":

The obviously correct 'fix' is to change line 37 as shown below:

```
31: reg cpuINTR;
32: always @(posedge clk or posedge rst)
33: begin
34: if (rst)
35: cpuINTR <= 0;
36: else if (clken)
37: cpuINTR <= (reqPRIORITY < curPRIORITY);
38: end
```

The 'one-liner' code change is applied and the simulation is re-run.

Now note that the cpuINTR signal is asserted by the instruction at PC=33313, as it should be. Still there is no interrupt to the KS10 CPU.

🛯 🖥 Read Cycle	0																
🛯 Write Cycle	0																
🗓 IO Cycle	0																
🔓 busREQ	0																
🗓 busACK	0	ЛШ															
🖓 memWAIT	0																
WORK																	
CROM ADDR[0:11]	0117	XXXX	XXXXX	000000	0000	000000	\$0000000000	00	0000000	XXX	0000000	000000	XXXX	000	XXXX	XXXX	XXXXXXXX
CROM CURRENT AD	0315	XXXX	XXXX	XXXXXXX	XXX	XXXXXXX	\$00000000000000000000000000000000000000	00	00000000	XXX	XXXXXXXX	XXXXXXX	XXX	\$XXX	XXX	XXXX	XXXXXXX
PC[18:35]	033312		3310	033311	X		033312				033313			33314		033	
📑 IR[0:17]	700600	20	0000 X	202000	X		700600				700200		X:	201540	X	367	540
1: PC[0:35]	000000033313	0)00	00000	0000003		0	0000033313)		000000033314			00000)(00	0)(000
2: HR[0:35]	700600002300	2000	000	20200000	X	700	600002300			70	0200110401		(2	0154	X	367540)33315
3: AR[0:35]	00000002300	26 🛛	26400		00)		00000002300				0000001104	01		000)0X	00000	0033315
5: BR[0:35]	16777280			0			1677728	D	<u>)</u> 0	$\langle 1$	χ	257				51	510
aco[0:35]	264000033317	26500	X						26400003	3317							
📷 AC4[0:35]	273650000000								273650000000								
📲 reqINTR[1:7]	0000000						0000000					X			1000	000	
📲 reqPRIORITY[0:3]	8						8					X			1		
CurPRIORITY[0:3]	8								8								
📑 reqINTP[0:2]	0						0					X			1		
urINTP[0:2]	0								0								
1 intrEN	1																
🖓 cpuINTR	0																

This is progress but something is broken somewhere else, also.